PUTNAM PRACTICE SET 2

PROF. DRAGOS GHIOCA

Problem 1. Let k € N and let ay,...,ax,b1,...,bp € N. We know that
ged(ag, b)) = 1 for each i = 1,..., k. We let M be the least common multiple
of the numbers by,...,b; and also, we let D be the greatest common divisor of
the numbers aq,...,a;. Then prove that the greatest common divisor of all the

numbers ‘”b'_M fori=1,...,k is equal to D.

Solution. After replacing each a; by a;/D, we may assume that ged(aq, ..., ar) =
1 and we have to prove that also ged(a; M /by, ..., axM/b;) = 1. Now, assume there
exists some prime number p dividing each a; M /b;. It cannot be that p | a; for each
i =1,...,k; so, without loss of generality, assume p t a;. Then p | M/by; hence
exp,(b1) < exp,(b;) for some i = 2,...,k (where exp,(c) is the exponent of the

prime p in the prime power decomposition of the integer ¢). Now, let i; € {2,...,k}
such that exp,,(b;,) = maxé?:1 exp,,(b;); in particular, p | by, but p { M/b;,. So, p
must divide a;,; however this contradicts our hypothesis that ged(a;,,b;,) = 1,

which concludes our proof.

Problem 2. Let P € Z[x] be a polynomial of degree deg(P) > 1. We let n(P) be
the number of all integers k for which (P(k))? = 1. Prove that n(P) — deg(P) < 2.

Solution. We argue by contradiction. We let i1, respectively i_; be the number of
integers k such that P(k) = 1, respectively P(k) = —1. Clearly, max{i1,i—1} < d,
where d := deg(P); so, by our assumption, we must have min{i;,i_1} > 3.

Now, for each ki,k_1 € Z such that P(k;) = j for j € {—1,1}, we get that
(k1 —k-1) | 2 and thus k; — k_; € {-2,-1,1,2}. So, if we order the integers in
P~1(—1), respectively in P~1(1) as

k_11>k_12>--->k_1,_,, respectively
k171 < kl,g < < /45171'1,
we get that for each j = 1,...,4;, we have that ki ; — k_11 € {—2,—1} because
there are at least two other differences k; j—k_1 ¢ for £ = 2,...,i_; which are larger
than k1 ; — k_1,1 (and all such differences are either £2 or + — 1). However, since
i1 > 3, we cannot have that each k; ; — k_11 € {—2,—1} for each j = 1,...,41.
This contradiction finishes the proof of our result.

Problem 3. Let aq,...,as be real numbers such that
a%+a§+a§+ai+a§ =1
: 2 o 1
Prove that minj<;<j<s(a; — a;)? < 15.
Solution. We argue by contradiction and so, assume mini<;<j<s(a; — a;)? > 15;
without loss of generality, we may assume a; < ay < ag < a4 < as. Then we

replace ai,...,as with numbers b, ..., bs such that
1
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(1) bH_l—bi:\/% foreachi=1,... 4.

(2) 2?21 b} < Z?:1 ai = 1.
Indeed, if all a; have the same sign, then without loss of generality (after flipping
the sign of each a;), we may assume 0 < a; < az < az < aq4 < as and then simply
take by = a7 and then b;11 = b; + \/% foreach 1 =1,...,4.
Now, if a; < 0 < a5, then we let j € {1,2,3,4} such that a; < 0 < a;1;. Then
we simply choose b; < 0 < b;11 such that
(1) bj41 = b =
(2) a; < bj <0< bj+1 < Aj41-
Then we let b; = b; — %0 for i = 1,...,7 — 1 and also, let b; = bjq + ?/%1 for
1=j42,...,5; clearly, the numbers by, ..., b5 satisfy the above two conditions.
Now, we compute

&

4 . 2

— b7 4 (b +Z>
1 ; 1 \/ﬁ

=502 +2V10- by + 3

2
2
>1

This contradicts the fact that 37, b2 < 1.

Problem 4. Let n be a positive integer. Prove that the number
Z": (2n + 1) g
P 2k+1

is not divisible by 5.

Solution. We consider (1 + \/§)2n+1 =: u, + v, - V/8; we observe that v, =
Soreo (ggﬁ) - 8%. We have that u? — 802 = —7?"*1 and so, assuming that 5 | vy,
we obtain that

ul= -2l = 2. (~1)"=42 (mod 5),

which is a contradiction since neither 2 nor 3 are squares modulo 5.

Problem 5. Let n be a positive integer, let aq,...,a, be positive real numbers,
and let ¢ € (0,1) be a real number. Prove that there exist n real numbers by, ..., b,
satisfying the following properties:

e qp < b foreach k=1,...,n;
0o g < b’gzl < % fork=1,...,n—1; and

o byt tby < L (a1 4+ ap).
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Solution. We have the following inequalities (after repeated applications of the
first two conditions above)

b > qbrs1 > ¢Pbgyo > - > ¢ e > ¢lagse

and
b > qbe—1 > ¢%bp_2 > - > q'br_¢s > ¢ ar_.

So, we define an auxilliary sequence

L = m%f(q‘i*k‘ak foreach k =1,...,n;
1=
then we need b, > ¢ for each kK =1,...,n. We claim that if we let by = ¢ + € for
some small positive real number ¢, then all of the three inequalities above will be
satisfied. Indeed, since for each k = 1,...,n (looking individually at each number
in the set whose maximum is represented by ¢y, respectively by ck1), we have that
1
q S Chtl S )
Ck; q
then we get that
c 1
<M<7foranye>0
cpt+€ q

because
qcx < cp1 + €(1 — q) and similarly, gegy1 < ¢ + €(1 — q).

Also, from the definition of the cg, we have ¢, > a; and therefore, by > ar. Now,
for the last inequality, we compute

n
>
k=1

n

= ne + Z Ck
k=1
n n
< ne+ Z Z qli_’dai

k=11i=1

2q" S
n

as long as € < , where S := ZZ=1 ar. This concludes our proof.

Problem 6. For each n € N, we let Q,, be a square of side length % Prove that
in a square of side length % we can arrange all the squares @), such that for any
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m # n, the squares @Q,, and @,, are placed so that there are no interior common
points for both @, and Q..

Solution. We put @1 in the bottom left corner with coordinates (0,0), (0,1),
(1,0) and (1,1). Then we put Q2 in the top right corner with coordinates (1, 3/2),
(3/2,3/2), (1,1) and (3/2,1) and we put Q3 in the upper left rectangle so that the
coordinates of Q3 are (0,1), (0,4/3), (1/3,4/3) and (1/3,1).

We split the remaining right rectangle (whose coordinates are (1,0), (3/2,0),
(3/2,1) and (1,1)) into vertical strips of lengths 1/4,1/8,...,1/2™,... (and com-
mon height 1). Note that the sum of the lengths of these strips is

1/4+1/84 - +1/2" 4. =1/2.
Then we arrange Qu, . .., Q7 in the first strip since their lengths is at most 1/4 and
the sum of their heights is

1/44+1/5+1/6+1/7<4-1/4=1.
Similarly, in the second strip we arrange Qs, ..., Q15 since their lengths is at most
1/8 and the sum of their heights is

1/84 - +1/15<8-1/8=1.

Always, Qan, Qani1, -+ ,Qon+1_q will fit in the the strip of length 1/2™.



