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PROF. DRAGOS GHIOCA

Problem 1. Let k ∈ N and let a1, . . . , ak, b1, . . . , bk ∈ N. We know that
gcd(ai, bi) = 1 for each i = 1, . . . , k. We let M be the least common multiple
of the numbers b1, . . . , bk and also, we let D be the greatest common divisor of
the numbers a1, . . . , ak. Then prove that the greatest common divisor of all the
numbers ai·M

bi
for i = 1, . . . , k is equal to D.

Solution. After replacing each ai by ai/D, we may assume that gcd(a1, . . . , ak) =
1 and we have to prove that also gcd(a1M/b1, . . . , akM/bk) = 1. Now, assume there
exists some prime number p dividing each aiM/bi. It cannot be that p | ai for each
i = 1, . . . , k; so, without loss of generality, assume p - a1. Then p | M/b1; hence
expp(b1) < expp(bi) for some i = 2, . . . , k (where expp(c) is the exponent of the
prime p in the prime power decomposition of the integer c). Now, let i1 ∈ {2, . . . , k}
such that expp(bi1) = maxk

j=1 expp(bj); in particular, p | b1, but p - M/bi1 . So, p
must divide ai1 ; however this contradicts our hypothesis that gcd(ai1 , bi1) = 1,
which concludes our proof.

Problem 2. Let P ∈ Z[x] be a polynomial of degree deg(P ) ≥ 1. We let n(P ) be
the number of all integers k for which (P (k))2 = 1. Prove that n(P )− deg(P ) ≤ 2.

Solution. We argue by contradiction. We let i1, respectively i−1 be the number of
integers k such that P (k) = 1, respectively P (k) = −1. Clearly, max{i1, i−1} ≤ d,
where d := deg(P ); so, by our assumption, we must have min{i1, i−1} ≥ 3.

Now, for each k1, k−1 ∈ Z such that P (kj) = j for j ∈ {−1, 1}, we get that
(k1 − k−1) | 2 and thus k1 − k−1 ∈ {−2,−1, 1, 2}. So, if we order the integers in
P−1(−1), respectively in P−1(1) as

k−1,1 > k−1,2 > · · · > k−1,i−1 , respectively

k1,1 < k1,2 < · · · < k1,i1 ,

we get that for each j = 1, . . . , i1, we have that k1,j − k−1,1 ∈ {−2,−1} because
there are at least two other differences k1,j−k−1,` for ` = 2, . . . , i−1 which are larger
than k1,j − k−1,1 (and all such differences are either ±2 or ±− 1). However, since
i1 ≥ 3, we cannot have that each k1,j − k−1,1 ∈ {−2,−1} for each j = 1, . . . , i1.
This contradiction finishes the proof of our result.

Problem 3. Let a1, . . . , a5 be real numbers such that

a21 + a22 + a23 + a24 + a25 = 1.

Prove that min1≤i<j≤5(ai − aj)2 ≤ 1
10 .

Solution. We argue by contradiction and so, assume min1≤i<j≤5(ai− aj)2 > 1
10 ;

without loss of generality, we may assume a1 < a2 < a3 < a4 < a5. Then we
replace a1, . . . , a5 with numbers b1, . . . , b5 such that

1
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(1) bi+1 − bi = 1√
10

for each i = 1, . . . , 4.

(2)
∑5

i=1 b
2
i <

∑5
i=1 a

2
i = 1.

Indeed, if all ai have the same sign, then without loss of generality (after flipping
the sign of each ai), we may assume 0 ≤ a1 < a2 < a3 < a4 < a5 and then simply
take b1 = a1 and then bi+1 = bi + 1√

10
for each i = 1, . . . , 4.

Now, if a1 < 0 < a5, then we let j ∈ {1, 2, 3, 4} such that aj < 0 ≤ aj+1. Then
we simply choose bj < 0 ≤ bj+1 such that

(1) bj+1 − bj = 1√
10

.

(2) aj < bj < 0 ≤ bj+1 ≤ aj+1.

Then we let bi = bj − j−i√
10

for i = 1, . . . , j − 1 and also, let bi = bj+1 + i−j−1√
10

for

i = j + 2, . . . , 5; clearly, the numbers b1, . . . , b5 satisfy the above two conditions.
Now, we compute

5∑
i=1

b2i

= b21 +

4∑
i=1

(
b1 +

i√
10

)2

= 5b21 + 2
√

10 · b1 + 3

= 5

(
b1 +

√
2

5

)2

+ 1

≥ 1

This contradicts the fact that
∑5

i=1 b
2
i < 1.

Problem 4. Let n be a positive integer. Prove that the number

n∑
k=0

(
2n+ 1

2k + 1

)
· 8k

is not divisible by 5.

Solution. We consider
(
1 +
√

8
)2n+1

=: un + vn ·
√

8; we observe that vn =∑n
k=0

(
2n+1
2k+1

)
· 8k. We have that u2n − 8v2n = −72n+1 and so, assuming that 5 | vn,

we obtain that

u2n ≡ −22n+1 ≡ −2 · (−1)n ≡ ±2 (mod 5),

which is a contradiction since neither 2 nor 3 are squares modulo 5.

Problem 5. Let n be a positive integer, let a1, . . . , an be positive real numbers,
and let q ∈ (0, 1) be a real number. Prove that there exist n real numbers b1, . . . , bn
satisfying the following properties:

• ak < bk for each k = 1, . . . , n;

• q < bk+1

bk
< 1

q for k = 1, . . . , n− 1; and

• b1 + · · ·+ bn <
1+q
1−q · (a1 + · · ·+ an).
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Solution. We have the following inequalities (after repeated applications of the
first two conditions above)

bk > qbk+1 > q2bk+2 > · · · > q`bk+` > q`ak+`

and

bk > qbk−1 > q2bk−2 > · · · > q`bk−` > q`ak−`.

So, we define an auxilliary sequence

ck =
n

max
i=1

q|i−k|ak for each k = 1, . . . , n;

then we need bk > ck for each k = 1, . . . , n. We claim that if we let bk = ck + ε for
some small positive real number ε, then all of the three inequalities above will be
satisfied. Indeed, since for each k = 1, . . . , n (looking individually at each number
in the set whose maximum is represented by ck, respectively by ck+1), we have that

q ≤ ck+1

ck
≤ 1

q
,

then we get that

q <
ck+1 + ε

ck + ε
<

1

q
for any ε > 0

because

qck < ck+1 + ε(1− q) and similarly, qck+1 < ck + ε(1− q).
Also, from the definition of the ck, we have ck ≥ ak and therefore, bk > ak. Now,
for the last inequality, we compute

n∑
k=1

bk

= nε+

n∑
k=1

ck

< nε+

n∑
k=1

n∑
i=1

q|i−k|ai

< nε+

(
n∑

i=1

ai

)
·
(
1 + 2q + · · ·+ 2qn−1

)
< nε+

(
n∑

i=1

ai

)
·
(

2

1− q
− 1− 2qn − 2qn+1 − · · ·

)

<
1 + q

1− q
·

n∑
k=1

ak −

(
2qn

n∑
k=1

ak − nε

)

<
1 + q

1− q
·

n∑
k=1

ak,

as long as ε < 2qnS
n , where S :=

∑n
k=1 ak. This concludes our proof.

Problem 6. For each n ∈ N, we let Qn be a square of side length 1
n . Prove that

in a square of side length 3
2 we can arrange all the squares Qn such that for any
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m 6= n, the squares Qm and Qn are placed so that there are no interior common
points for both Qm and Qn.

Solution. We put Q1 in the bottom left corner with coordinates (0, 0), (0, 1),
(1, 0) and (1, 1). Then we put Q2 in the top right corner with coordinates (1, 3/2),
(3/2, 3/2), (1, 1) and (3/2, 1) and we put Q3 in the upper left rectangle so that the
coordinates of Q3 are (0, 1), (0, 4/3), (1/3, 4/3) and (1/3, 1).

We split the remaining right rectangle (whose coordinates are (1, 0), (3/2, 0),
(3/2, 1) and (1, 1)) into vertical strips of lengths 1/4, 1/8, . . . , 1/2n, . . . (and com-
mon height 1). Note that the sum of the lengths of these strips is

1/4 + 1/8 + · · ·+ 1/2n + · · · = 1/2.

Then we arrange Q4, . . . , Q7 in the first strip since their lengths is at most 1/4 and
the sum of their heights is

1/4 + 1/5 + 1/6 + 1/7 < 4 · 1/4 = 1.

Similarly, in the second strip we arrange Q8, . . . , Q15 since their lengths is at most
1/8 and the sum of their heights is

1/8 + · · ·+ 1/15 < 8 · 1/8 = 1.

Always, Q2n , Q2n+1, · · · , Q2n+1−1 will fit in the the strip of length 1/2n.


